Evolutionary Computation for Optimal Ensemble Classifier in Lymphoma Cancer Classification
نویسندگان
چکیده
Owing to the development of DNA microarray technologies, it is possible to get thousands of expression levels of genes at once. If we make the effective classification system with such acquired data, we can predict the class of new sample, whether it is normal or patient. For the classification system, we can use many feature selection methods and classifiers, but a method cannot be superior to the others absolutely for feature selection or classification. Ensemble classifier has been using to yield improved performance in this situation, but it is almost impossible to get all ensemble results, if there are many feature selection methods and classifiers to be used for ensemble. In this paper, we propose GA based method for searching optimal ensemble of feature-classifier pairs on Lymphoma cancer dataset. We have used two ensemble methods, and GA finds optimal ensemble very efficiently.
منابع مشابه
Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملOptimization of stacking ensemble configurations through Artificial Bee Colony algorithm
A Classifier Ensemble combines a finite number of classifiers of same kind or different, trained simultaneously for a common classification task. The Ensemble efficiently improves the generalization ability of the classifier compared to a single classifier. Stacking is one of the most influential ensemble techniques that applies a two level structure of classification namely the base classifier...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کامل